Produktbeschreibung
Architekturprinzipien von Data-Warehouse-Systemen Datenstrukturen und Algorithmen Anwendungsfeld Business Intelligence Dieses Lehrbuch behandelt Konzepte und Techniken von Data-Warehouse-Systemen, die eine wesentliche Komponente in betrieblichen Entscheidungsprozessen darstellen. Im Mittelpunkt stehen dabei Architekturprinzipien sowie die Umsetzung des multidimensionalen Datenwürfels als zentrale Komponente des Data Warehouse. Die Zusammenführung der Daten aus verschiedenen betrieblichen und externen Quellen spielt eine ebenso wichtige Rolle wie Datenstrukturen und Algorithmen für die Realisierung von Speicher- und Indexstrukturen. Die Navigation im Datenwürfel und die Anfrageverarbeitung sowie Anwendungen aus dem Themenfeld Business Intelligence geben einen Einblick in den Umgang mit dem Data Warehouse.Detailliert werden sowohl der Aufbau als auch die Nutzung von Data-Warehouse-Systemen beleuchtet. Dabei stehen Modellierungskonzepte und die Thematik der multidimensionalen Anfragen im Vordergrund. Zudem werden Interna wichtiger Systemlösungen von Oracle, IBM und Microsoft anhand zahlreicher Beispiele erläutert.Das Buch fokussiert auf relationale Umsetzungsstrategien des Data Warehouse. Es ist daher empfehlenswert, sich ebenfalls mit den Grundlagenwerken Datenbanken – Konzepte und Sprachen sowie Datenbanken – Implementierungstechniken auseinanderzusetzen; sie erlauben es dem Leser, die Konzepte aus Datenbanken für das Data Warehouse leichter zu transferieren. Das Buch ist geeignet für Studierende der Informatik oder verwandter Fächer im Masterbereich und bietet gleichzeitig auch dem Anwender bzw. Entwickler vertiefende Hintergrundinformationen zu aktuellen Data-Warehouse-Technologien.Die Autoren lehren und forschen im Bereich Datenbanken und Informationssysteme sowie Business Intelligence – Veit Köppen und Gunter Saake an der Universität Magdeburg und Kai-Uwe Sattler an der TU Ilmenau. Aus dem Inhalt: Data Warehousing Architekturkonzepte Extraktion, Transformation und Laden Datenqualität Business Intelligence Modellierung Multidimensionales Modell Relationale Umsetzung Star- und Snowflake-Schema Slowly Changing Dimensions Speicher- und Indexstrukturen ROLAP und MOLAP Partitionierung Row Stores, Column Stores und In-MemoryBitmap-Indexe Mehrdimensionale Indexstrukturen Data Warehouse:Anfragen und Verarbeitung OLAP-Anfrage-operatoren SQL-Operatoren im Data Warehouse Anfrageplanung Materialisierte Sichten