Felix R. Gantmacher - Matrizentheorie

Felix R. Gantmacher - Matrizentheorie

61,68 €

12.1. 1. In diesem Kapitel wird folgende Frage behandelt: Gegeben seien vier Matnzen A, B, A1, B1 gleichen Typs (m, n) mit Elementen aus e~nem Zahlkorper K. Gesucht s~nd die Bedingungen, unter denen zwei regulare quadra t~8che Matrizen P und Q der Ordnung m bzw. n existieren derart, dafJ gleichzeitig...

Direkt bei Thalia AT bestellen

Produktbeschreibung

12.1. 1. In diesem Kapitel wird folgende Frage behandelt: Gegeben seien vier Matnzen A, B, A1, B1 gleichen Typs (m, n) mit Elementen aus e~nem Zahlkorper K. Gesucht s~nd die Bedingungen, unter denen zwei regulare quadra t~8che Matrizen P und Q der Ordnung m bzw. n existieren derart, dafJ gleichzeitig (1) giU. 1) Fuhrt man die Matrizenbuschel A + J..B und A1 + J..B ein, so k6nnen die beiden 1 Matrizengleichungen (1) durch die einzige Gleichung (2) P(A + J..B) Q = A1 + J..B1 ersetzt werden. Definition 1. Wir nennen zwei Buschel A + J..B und A1 + J..B rechteckiger Ma 1 trizen gleichen Typs (m, n) streng aquivalent, wenn fUr sie die Gleichung (2) gilt und dabei P und Q konstante (d. h. von J.. unabhiingige) regulare quadratische Matrizen 2 (m-ter bzw. n-ter Ordnung) sind. ) Nach der allgemeinen Definition, der Aquivalenz von Polynommatrizen (vgl.
Marke Springer Berlin
EAN 9783642712449
ISBN 978-3-642-71244-9

...

9,20 €

Samuel Hahnemann - Organon der Heilkunst
...

36,00 €

Michael Zeuske - Von Bolívar zu...
...

29,00 €

Walter Dietrich - Die dunklen Seiten...
...

13,00 €

Walther Hinz - Neue Erkenntnisse über...
...

12,90 €

Wolfgang Neuss - Neuss' Zeitalter

Beratungskontakt

contact-lady

Vereinbaren Sie ein kostenloses Erstgespräch. Wir beraten Sie gerne!



Kategorien